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Molecular dynamics simulations of four binary Ar-Kr mixtures are used to compute self- and mutual-
diffusion coefficients. Results using mean squared displacements and using velocity correlation functions
are presented. The diffusivity coefficients are also presented in the time and frequency domains where a
comparatively low frequency structure is evident in some simulations. The computed diffusivities are
dependent on the maximum time over which the velocity correlation functions are integrated and the
time at which the Einstein relationships are evaluated. This dependence explains in part the small sys-
tematic differences between our results (20—80 ps) and earlier molecular dynamics results ( <4 ps) in the
system Ar-Kr. We compare the computed mutual diffusion coefficients to two empirical models,
Darken’s model and the common force model. Darken’s model is consistent with our results over the
entire frequency range we resolve. At frequencies lower than about 5 ps~! Darken’s model and the com-
mon force model converge and we cannot discriminate between them. At higher frequencies the com-
mon force model prediction is significantly different from the computed mutual diffusion coefficient. As-
sumptions regarding the contribution of cross correlations that are implicit in the empirical models are
discussed and tested against our simulation results. The net contribution of velocity cross correlations is
found to be negligible, as is often assumed in deriving Darken’s model, but the individual cross-
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correlation terms are substantial and negative—a finding contrary to common assumptions.

PACS number(s): 05.60.+w, 05.70.Ln, 82.20.Wt, 82.20.Mj

I. INTRODUCTION

Mutual diffusion, also called chemical diffusion or
interdiffusion, describes the transport of mass driven by
gradients in chemical potential. In geological systems
multicomponent chemical diffusion is related to such pro-
cesses as oscillatory zoning in crystals, double diffusive
convection in magmas, partial melting of the mantle, and
isotopic and chemical exchange in silicate melts [1-4].
The complexity of these phenomena is in striking con-
trast to the apparent simplicity of Fick’s law.

Strictly speaking, under isothermal and isobaric condi-
tions chemical diffusion in an n-component system can be
described by an (n—1)X(n —1) composition- and
reference-frame-dependent diffusivity matrix [5]. The
chemical complexity of natural magma compositions
makes it impractical to specify this full diffusivity matrix
for every system of geological interest. Instead, empirical
diffusion models are often employed. A number of such
models have been proposed in experimental studies of
diffusion in glasses, metal and silicate melts, and aqueous
solutions [6—10]. In this paper we will consider two par-
ticular models that predict different relationships between
the mutual-diffusion coefficients, the n self-diffusivities,
and other thermodynamic quantities such as partial mo-
lar volumes.

One of the diffusion models we consider is called
Darken’s model [7] or the Hartley-Crank equation [11] in
binary systems, and Cooper’s model in multicomponent
systems [8]. This model gives the diffusion flux of a
species, say i, as the sum of two terms. The first term de-
scribes the diffusion of i/ in response to gradients in its
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own chemical potential. The phenomenological
coefficient in this first term is taken to be the self-
diffusivity of component i. The second term describes the
advection of i with a velocity called the relaxation veloci-
ty, and which is common to all chemical species. The re-
laxation velocity is determined by requiring that there be
no net volume flux [12]. The chemical diffusivities are
given in terms of the self-diffusivities by expressing the
relaxation velocity in terms of the n component fluxes.

In molten silicates a model based on a common relaxa-
tion force describes experimental results better than the
Darken common relaxation velocity model [10]. In its
simplest form this “common force” model is mathemati-
cally equivalent to Lasaga’s [9] model for cation diffusion
in an anion-fixed reference frame. There the cations, as-
sumed of equal charge, are subject to the same electro-
static repulsion force. This model has found application
to both electrolyte and nonelectrolyte solutions [13]. In
uncharged systems the value of the common force is
again determined by a constraint of zero net volume flux.
The chemical diffusivities may be expressed in terms of
the self-diffusivities by expressing the common force in
terms of the component fluxes.

In this study we test these empirical models in binary
argon (Ar)-krypton (Kr) mixtures using molecular dy-
namics simulations. Molecular dynamics is well suited to
the study of transport properties of liquids since it allows
the diffusive motions of each particle to be “observed” on
atomic scales of length and time (e.g., [14,15]). The
chemical and self-diffusion coefficients of a binary system
may be computed simultaneously in a single simulation.
We determine these coefficients by two methods and test
them for consistency with the empirical diffusion models.
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In Ar-Kr we find good agreement with Darken’s model,
which is what one might anticipate since the derivation
of Darken’s model often appeals to “ideality” [11,16].
However, “ideality”’ is not evident in the velocity cross
correlations seen in the simulation. That is, Darken’s
model works despite the failure of a common model as-
sumption. Thus there is a need to develop a more general
understanding of the relationship between chemical prop-
erties and the heuristic diffusion models most appropriate
to them.

In the statistical theory of liquids phenomenological
diffusion coefficients are expressed as the time integrals of
correlations of functions of microscopic particle veloci-
ties, i.e., the Green-Kubo formulas [17]. Chemical and
self-diffusivities are related to the velocity correlation
functions of collective motions of the system and of
single-particle motions, respectively. Darken’s model
and the common force model each require different rela-
tionships amongst the cross-correlation terms. For
Darken’s model to apply the sum of the contributions of
the cross correlations must be zero. This is consistent
with, but does not require, ideality. The cumulative
effect of cross correlation is negative in the common force
model, and so in binary systems the common force
interdiffusion coefficient is less than the Darken model
value.

The Green-Kubo formulas are evaluated by integrating
the correlation functions over time from zero to infinity.
In practice the upper limit of integration is rarely greater
than a few picoseconds [18-20]. We examine the effect
of this practice by computing the Fourier spectra of the
velocity correlation functions, and thereby defining
frequency-dependent diffusivities. The zero-frequency
limit of the frequency-dependent diffusivity corresponds
to the usual macroscopic diffusivity, but this term cannot
be uniquely determined in a picosecond time scale experi-
ment if low frequency modes of the system are present.
The effect of truncating the Green-Kubo integrals may be
qualitatively assessed by examining the frequency struc-
ture of the frequency-dependent diffusivities. If the slope
of diffusivity with frequency is non-negligible at the
lowest resolved frequencies then truncating the upper
limit of integration is likely to have a measurable effect.
When no frequency dependence is seen at low frequencies
it is possible, though not certain, that the truncation is in-
consequential.

Frequency- or time-dependent diffusivity at short times
has been observed experimentally [21-24] and in numeri-
cal simulations of colloidal particles [25,26].

We also calculate diffusion coefficients using the Ein-
stein relations [16]. This method is based on the time
dependence of the mean squared displacement of
specified modes of the system. Self-diffusivities are deter-
mined from the displacement of individual particles; mu-
tual diffusivities are found from the displacement of a col-
lective particle mode. Einstein diffusivities are formally
equivalent to Green-Kubo diffusivities when evaluated at
infinite time. The relationship between these models
when truncated at a finite time is described.

In Sec. IT A we introduce the empirical diffusion mod-
els starting from the phenomenological equations of
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nonequilibrium thermodynamics. The relationship be-
tween these macroscopic phenomenological coefficients
and the microscopic particle trajectories ‘“‘seen’ in molec-
ular dynamics simulations is presented in Sec. II B. In
Sec. IIT some details regarding our numerical simulations
are described, and in Sec. IV the simulation results for
the self-diffusivity of Ar and of Kr and for their mutual
diffusion are presented. These results are discussed in the
context of the empirical models in Sec. V. Finally, we
present our conclusions in Sec. VI.

II. EMPIRICAL DIFFUSION MODELS

In this section we develop a complete phenomenologi-
cal model for multicomponent diffusion. Phenomenologi-
cal developments of Cooper’s model and the common
force model are also presented. Next, we describe the re-
lationship between the phenomenological diffusivity
coefficients and microscopic statistical properties of the
system. We show that reduction of the binary mutual-
diffusion coefficient to the empirical model equations re-
quires specific relationships amongst the velocity cross-
correlation functions. This provides the theoretical back-
ground necessary to “measure” diffusion coefficients in a
simulation, and to test the validity of the assumptions im-
plicit in the empirical models.

A. The phenomenological equations

Consider an n-component system under conditions of
constant pressure P and temperature 7. According to the
theory of nonequilibrium thermodynamics [5], the entro-
py production per unit volume and the unit time, o, can
be written as a sum of n products of diffusion fluxes J;
and associated thermodynamic “forces” Vyu, /T:

n

o=—>17;-

i=1

Vi,

T (1

Here, p; is the molar chemical potential of species i. The
phenomenological equations may be written quite gen-
erally as
n v
J,.=—§;1,.k% (i=1,2,...,n), @
k=1
where [, is a set of n? phenomenological coefficients. At
thermodynamic equilibrium the average values of o, J,,
and Vy,; vanish.
In laboratory experiments the diffusion fluxes are usu-
ally defined relative to a volumetric reference velocity u?,

¥=p;(u;—u") (i=1,2,...,n), (3a)
with
n —
qu 2 Vip,-ui N (3b)
i=1

where ¥, is the partial molar volume of component i,u;
its velocity, and J! its molar flux. p; is the mole density
of species i, and the total molar density is given by
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p=37_,p;. The condition u”’=0, defining the volume-
fixed reference frame, is commonly assumed.
The continuity equation

n
> Vi3f=0 )
i=1
places a constraint on the n diffusion fluxes, and we may
use this constraint to eliminate one flux, say J ,‘,’ , from (1).
Then the entropy production may be described by the
remaining n — 1 fluxes and new associated forces:

n! Vu, V, Vu,
o=— 2 Yo |l— = (5)
i=1 l T Vn T
The n — 1 phenomenological equations implied by (5) are
. Vue Vi Y,
J!’=_2Lk —— (i=1,2,...,n—1),
‘ k=1 ’ r Vn T
(6)

and the nth flux J) is given by (4). The new phenomeno-
logical coefficients L; can be related to the [; by equat-
ing individual terms in (2) with corresponding ones in (6).

The Gibbs-Duhem equations provide a constraint on
the thermodynamic forces:

> piVu;=0. )]
i=1
Using (7) to eliminate Vyu, from (5) we obtain
n—1

Z_ZJV

i=1

V“' L Ystes iy

= , (8)
V,i=iPn T

and after rearranging dummy indices the phenomenologi-
cal equations can be written as

IV (7! VP
J,~V=—E S |8p+= (L
=1 T j=1 nFn
(i=1,2,...,n—1). (9

In laboratory experiments diffusion is studied by
measuring concentration gradients, Vp;. Because of the
identity

S Vipi=1 (10

there are n—1 independent mole densities:
PP -+ - »Pn—1- We may then use (10) to write the phe-
nomenological equations (9) in terms of n» —1 concentra-
tion gradient driving forces Vp:

" Vo |notduy |n ViPi
D et b e | TR
! = T [k=1aP1 j=1 ! Vn n Y
(i=12,...,n—1), (11

where the partial derivatives du,; /dp; are evaluated hold-
ing py; fixed.

The chemical or mutual-diffusion coefficients are
defined by
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n—1
== DiVp, (i=12,...,n—1). (12)
k=1
Here, D}, is an element of an (n —1)X(n —1) matrix of
chemical diffusivities, and the superscript V refers to
the volume-fixed reference frame. These chemical
diffusivities may be expressed in terms of the phenomeno-
logical coefficients L;; by equating (11) and (12).

In summary, the (n —1)X(n —1) chemical diffusivity
matrix D} assumes that there are n? phenomenological
constants connecting each of n ‘“forces” to each of the n
diffusion fluxes J;”. The number of constants is reduced
from n? to (n —1)? by application of the continuity equa-
tion and the Gibbs-Duhem equations. Onsager’s recipro-
cal relationship postulates that the phenomenological
coefficients /;; and L;; are symmetric (i.e., [;;=1;, etc.).
We do not make use of that symmetry here, but we note
that symmetry of / and L does not carry over to symme-
try in D.

In contrast to this general approach, the empirical
models postulate n independent mobilities and specific
microscopic dynamics to satisfy the continuity equation.

In Cooper’s model the molar flux of species i is divided
into a diffusion term and an advection term [8,12]:

D;
—Pi RTV,"LI +Pz u’ (i _1 2 n) ’ (13)
where D; is the self-diffusivity of species i,D; /RT defines
its mobility, and R is the gas constant. Here, u” is the re-
laxation velocity that is assumed common to all species.

The value of u” is determined by the continuity equation
(4),

I/=

E Vp, V,u, . (14)

Substituting (14) into (13) and replacing Vu,; with Vp, as
the driving force we may write Cooper’s model as

3= Vo IS |6, 2o —p 7. 2y, 7 D
p,El Pk j§1 iRT Pj IRT Pj "RT
w2y
Ipi
(i=1,2,...,n—1). (15)

The molar flux of component i is the common force
model is also written as the sum of a diffusion term and
an advection term, but the latter is characterized by a
common force F [9,10],

D;
_leTV:‘J'I_*_PlI/lﬁF (i= ---,n) . (16)

The constraint (4) requires that

¥/

F=3pi¢;Vu; , (17a)

i=1

where the factor ¢ is a molar volume-weighted average
mobility of the system given by [10]
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17.]_).
o= (17b)

ZP,,

j=1
In terms of concentration gradients the common force
model is

D n—1 — — :u‘/
W=—pi%+ RT, E Vo jgl(%_Vin‘/’j*LVin‘f’n)a

(i=12,...,n—1). (18)

Combining (12) and (15) yields a general expression for
the relations between chemical and self-diffusion
coefficients, along with other thermodynamic quantities,
implied by Cooper’s model. Similarly, combining (12)
and (18) gives the relations implied by the common force
model. In the present study we are only interested in
binary systems. The explicit expressions for n =2 are

1 9y

Dif =p1V1(psD1+p1D, )RT ap, 19

for Darken’s model (the n =2 case of Cooper’s model,
and denoted by the superscript d), and

P172D1D2 1 Oy

Dif=—; 72
Vip:Dy+V3p,D, RT 0p,

, (20)

for the common force model (superscript c¢).

To proceed further it is necessary to express the chemi-
cal potential gradients in terms of concentration gra-
dients. This requires additional constitutive models
specific to the chemical systems being investigated. The
rare gas system we study here is nearly ideal. In the par-
ticular case of ideality we have u;=u’?+RT Inx;, with
x;=p;/p the molar fraction of i. By assuming ideality
Egs. (19) and (20) reduce to

D/4=x,D +x,D, 1)
and
DD
Dlf=— 2 , (22)
p(VipiDy+VipiD,)

respectively. If additionally the partial molar volumes of
species 1 and 2 are equal, i.e., ¥, =¥, =1/p, the common
force model takes the simple form

D,D,
Dif= : 23
1 x1D1+x2D2 ( )

B. Microscopic equations for the diffusion coefficients

In molecular dynamics simulations the flux of species i

is defined relative to the center-of-mass velocity
u”=3"_,c;u; as [16]
J'=p,c;(u;—u™), (24)

where c; is the mass fraction of component i and p,, the
total mass density, p,, =3 '=m;p;, with m; the molar
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mass of species i. Summing (24) over species gives trivial-
ly

2J7=0. (25)

i=1

The center-of-mass reference frame is defined by the con-
dition u™=0, which is the case in an NVE ensemble (par-
ticle number N, volume V, energy E) molecular dynamics
simulation. In this ensemble the momentum of the sys-
tem is conserved and may, without loss of generality, be
set to zero. The species velocity u; is given by the indivi-
dual particle velocities:

=—2vv, (26)

1v1

where N; is the number of particles of species i and v, is
the velocity of particle v of species i. The phenomenolog-
ical equations equivalent to (12), but in the center-of-mass
reference frame, are

n—1

J'=—p, 3 DFVe, (i=12,...,n—1). (27)
k=1

In order to relate these center-of-mass chemical
diffusivities D’” to those defined in the volume-fixed refer-
ence frame, D,J, we need to relate the fluxes J” and J/, 4
and define the derivatives of mass fractions with respect
to molar density. The two fluxes are related through the
velocities u;,u,, . . . ,u,, which are equal in the two refer-
ence frames. For example, the volumetric reference ve-
locity u” defined in (3b) can be expressed in terms of J7,
giving
I_/n I_/k

S
— +p;
1

(28)

n—1
="s 1
k=1

m, my

The derivatives dc; /dp; are obtained d by expressing c; and
p; in terms of the constants m; and V; (see Ref. [5] for de-
tails),

(,j=12,...,n—1), (29)

Vi

aci 1

5.+
8; pw |0

n

where dc; /9p; is differentiated at ﬁxed Px+j- Equations
(12), (27), (28), and (29) specify D in terms of D/ and
vice versa. In general these dlﬁ'us1v1ties are not equal.
However, in the binary case the single chemical
diffusivity D,;; is independent of reference frame:
DT, =D/|. Moreover, since the self-diffusivities D, are
also independent of reference frame, in binary systems
the equations for Darken’s model [e.g., (21)] and for the
common force model [e.g., (23)] are independent of refer-
ence frame.

The Green-Kubo formula for the chemical diffusion
coefficient is obtained by combining the phenomenologi-
cal equation (27) with the equation of conservation of
mass, and solving these equations in the frequency
domain and in reciprocal space. Details are given in Ref.
[16]. We consider a binary system of N, atoms of type 1
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and N, atoms of type 2. The single chemical diffusivity
in this system is given by the one-sided Fourier transform
of a collective velocity correlation function:

D)= "Gt + )50 Yexpliot)dr

3Nxx, J-o
(30a)

where N =N, + N, is the total number of particles. Here
j(2) is a collective quantity of particle velocities,

N, N,
J(t)—xzzv —xIVExv (30b)
and Q is a thermodynamic factor defined by
Q0 =[14x;x,0(T};;+Ty—2T )] 7", (30c)
with
Ty =dm [ “r’lgy(n—11dr . (30d)

In the last equation g;;(r) is the radial distribution func-
tion for the pair of species ij. Equations (30c) and (30d)
give necessary recipes for computing the thermodynamic
factor Q in a molecular dynamics simulation. It may be
shown [27] that Q is related to the compositional deriva-
tive of chemical potential by Q =(x,;/RT)(3u,/dx,).
For ideal solutions it follows immediately that Q =1 and
from (30c) that Ty, +T",—2I',,=0

The self-diffusion coefficients are given by the similar
but simpler expression

tmax_’
Dj@)=1% [

where c;(?) is the average over all particles of type j of

the velocity autocorrelation function:
1Y
cj(l‘)z']'v— > (v t+7)v (7)) .

J v=1

wcj(t)exp(ia)t)dt , (31a)

(31b)

The velocity correlation functions in Egs. (30a) and
@31b), {v (¢t +7) \ 7)), may be averaged over different
time origins 7. Typlcally 10*-10° time origins are used in
our simulations and the angular bracket { ) denotes such
an ensemble average.

The diffusion coefficients given by (30) and (31) are fre-
quency dependent. For comparison with laboratory
diffusion experiments only the results in the low frequen-
cy limit w—0 are relevant. However, since the upper
limit of integration ¢,,, in Egs. (30a) and (31a) is of
necessity finite, frequencies lower than 27 /f_,, are not
well constrained. The numerical results at @ =0 are valid
only if the system has no modes with characteristic time
scales longer than ¢ ,,. Diffusivities at high frequencies
(0>>2m/t,,) may be well constrained when the in-
tegrals (30a) and (31a) are truncated, even if diffusivities
at lower frequencies are not.

There are two important differences between the for-
mulas for the chemical diffusion coefficient (30) and self-
diffusion coefficient (31). First, the thermodynamic Q
factor in Eq. (30a) gives the chemical diffusion coefficient

a thermodynamic dependency that is lacking in the self-
diffusion coefficient. However, for a thermodynamically
ideal mixture Q =1 and the thermodynamic dependency
of D, is removed. Second, the correlation function for
D; is a single-particle property, which can be averaged
over N; atoms of the same type, whereas the correlation
function appearing in D,; is a collective quantity that
permits no such averaging. This makes a profound
difference in the statistical precision with which these
terms may be determined in a numerical simulation.

If we expand the expression for D;; (30a) and group
separately the velocity autocorrelations and cross correla-
tions, D,; may be written as

Dll(a))ZXZDl(w)+x1D2(w)

(w) () (w)
+x,%, f112‘0 +f222‘0 _2f12
X1 x5 X1X2

(32)

The f functions [28] are the Fourier transforms of the ve-
locity cross-correlation functions given explicitly by

Nl Nl
f,,(m)——z > f (vv(t +7)v, (7))
v ly#v
Xexp(iwt)dt (33a)
NZ N2 maxﬁ’o
fzz(w)-———z 3 f (v(t+7)v,(7))
v ly+#v
Xexpliot)dt , (33b)
Nl N2 max“’0
fulo)= z S f (vt +71)v, (1)
v—l'y—l
Xexpliot)dt . (33¢)

Comparing (32) with (21) it follows immediately that we
must satisfy

(w) () (o)
fu2 +f222a) _2f12w _ (34)
X1 x3 X1X2

in order to obtain the generalization of Darken’s model,

D (0)=x,D(0)+x,D,(e) . (35)

Similarly, a comparison of (32) with (23) indicates that

S1(o) + Snlo) _2f12(a’

x? x2

X1%X2

[D(0)—D,(w)]?
xD(w)+x,D,(w)

(36)

is necessary to generalize the common force model,

e D (@) +x,Dy(0)

The denominator on the right-hand side of (36) and (37) is
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the average self-diffusivity of the system. It can be seen
from (36) that the common force model implies a nega-
tive net contribution of cross correlations to the chemical
diffusivity. Hence D, given by the common force model
is less than or equal to that given by Darken’s model.
The difference between the two models becomes trivial
when the two self-diffusivities are similar.

In this section we indicated how microscopic variables
in molecular dynamics experiments may be used to
deduce self-diffusivities [D; and D,, Eq. (31)] and chemi-
cal diffusivities [D,;, Eq. (30)]. Specific relationships
amongst the cross correlations that are required to give
Darken’s and the common force model were presented
[Egs. (34) and (36)]. This gives the theoretical back-
ground that allows us to test whether a given binary sys-
tem may be well represented by a particular empirical
diffusion model. The generalization of these results to
several (n>2) components is straightforward but
lengthy. In Sec. V we apply these results to our Ar-Kr
simulation results, described below.

III. SIMULATION REMARKS

In this study we conducted simulations in the NVE en-
semble. The atoms interact via a Lennard-Jones (L-J) po-
tential,

12 6

aij Uij

r

¢ij=46ij (38)

The potential parameters governing interactions between
unlike atoms are given by the Lorentz-Berthelot mixing
rules,

0'1]:(0'11+(722)/2 (398.)

and
612=(611€22)1/2 . (39b)

The L-J parameters for the model argon and krypton
atoms are given in Table I. We truncated the potential at
a cutoff radius, discussed below, and made appropriate
corrections to the potential energy and pressure using the
method described in Ref. [20].

Atoms are confined in a cubic box and initially placed
at fcc sites. Their positions and velocities are advanced
according to the leapfrog algorithm [29]. Periodic
boundary conditions are employed. The system is al-
lowed to equilibrate for 2 X 10* to 5X 10* time steps until
the thermodynamic quantities 7" and P stabilize to their
equilibrium values, which we judge by an absence of sys-
tematic drift. Velocity correlation functions and radial

TABLE 1. Lennard-Jones potential parameters (from Ref.
[20)).

Molecule m (g/mol) e€/kyg (K) o (A)
Ar 39.95 120 3.405
Kr 83.80 167 3.633
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distribution functions are calculated from the data stored
during the simulation, but not during the equilibration
period.

Before doing any simulations of binary systems we did
a few trial runs on pure Ar to test our programs against
other published results. The first trial run we made is for
a system of 108 Ar atoms at a density of 0.85/03, with
a cutoff radius of 2.50. With an energy of
(—4.617 68+0.000 04 )e we obtained an equilibrium tem-
perature of (0.881+0.05)e/ky, and pressure of
(1.21£0.30)e /0> using data collected over 20000 time
steps following equilibration. These P and T values are
consistent with the equation of state of argon given by
Verlet [30]. The self-diffusivity of Ar calculated from the
mean squared displacement (i.e., the Einstein relation) is
1.59X107° cm?/s.

In the second trial, we did a simulation of the same sys-
tem at the same thermodynamic state but using Ewald’s
method [31] to evaluate the » ~® part of the potential and
forces exactly. Since this program and the one used in
the first test were coded independently, comparing the re-
sults of this second run with those of the first provides a
double check. The convergence parameter for the
Ewald sum was chosen as =L /5. For this run
at E=(—4.61769£0.00004)¢ we obtained T
=(0.88+0.04)e/ky and P =(1.20%0.31)e/c> after
equilibration. The results are in good agreement with
those of the previous trial. Although there is no apparent
truncation effect on the internal energy, temperature, or
pressure, the self-diffusivity of Ar for this run is
1.86X 1073 cm?/s, which suggests this dynamical proper-
ty may be sensitive to the truncation of the long-range
potential. To make certain that the diffusivity was com-
puted correctly we carried out a third trial run with 864
Ar atoms, density 0.81/03 for comparison with
Rahman’s diffusivity simulation result [32]. This simula-
tion used an L /2 cutoff radius of 10.2¢0 instead of
Ewald’s method. At T =(0.79£0.01)e/kg, we calculat-
ed the diffusion constant of Ar to be 2.52X 10° cm?/s.
This number is slightly greater than Rahman’s value
(2.43X107° cm?/s), but is within the range of statistical
errors. Our value is also consistent with the measured
diffusivity of Ar at T =0.75€¢/kp, 2.43X 107> cm?/s [32].

The good energy conservation, the internal consistency
of our trial runs, and the generally good agreement be-
tween our results and prior studies demonstrate that the
simulations are correctly implemented in our programs.

IV. SIMULATION RESULTS
FOR BINARY Ar-Kr MIXTURES

Four binary system simulations were performed in this
study: three 512-particle simulations at different compo-
sitions and one 1728-particle simulation at equimolar
composition (see Table II). All the simulations were run
at the same nominal pressure and temperature. A time
step of approximately 0.01 ps was used, which gave ener-
gy conservation to two parts in 10° during the entire
simulations which consisted of O(10°) time steps. The
potential interactions were truncated at half of the simu-
lation cell edge length (L /2). After equilibration we
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TABLE II. Simulation runs and the corresponding equilibrium states.

Run Nar/Ni: Time steps L (A) pm (g/cm?) T (K)? P (MPa)®
1 256/256 10° 30.56 1.84 121.7+2.7 0.82+5.9
2 384/128 9% 10° 30.52 1.52 121.3+2.7 0.82+5.8
3 128/384 5% 10° 30.66 2.15 121.1+£2.8 0.92+5.9
4 864,/864 4.62X10° 45.85 1.84 120.4+1.4 0.52+3.2

2Errors are estimated from rms fluctuations.

stored the coordinate and velocity of each atom in the
system at every fifth time step. Diffusivities were com-
puted later from these stored simulation results.

The time origins 7 we average over are offset by about
0.05 ps (5 time steps). In a study by Schoen and Hoheisel
[19] they found that the characteristic decay time of their
correlation functions was 0.3 ps. By averaging over time
origins separated from one another by less than this time
scale, we are effectively including redundant information
that reduces the effectiveness of the averaging. However,
the total number of averages we take is so large,
0 (10*-10%), that this effect does not materially effect our
results. To verify this we tried a computation averaged
over 2X 10* origins, each spaced 0.3 ps (30 time steps)
apart. The resulting mean squared displacement func-
tions were indistinguishable from those obtained with a
0.05 ps spacing. Subsequent calculations are based on 2
0.05 ps spacing between time origins 7.

A. Thermodynamic properties

We compute the radial distribution functions g;;(r)
from the ensemble average of histograms of interparticle
separation. The results for run 1 are shown in Figs.
1(a)—1(c) to half of the length of the cubic box (L /2~15
A). It can be seen that these functions approach the ideal
gas limit, 1—38,; /N, for large r [16].

The factor 1/N; is insignificant in the thermodynamic
limit N — . However, that factor may result in a finite
contribution to T';; even in the thermodynamic limit since
the T';; are integrals of the radial distribution functions
over the entire volume of the system. Thus a nontrivial
correction is needed. Integrating the g;;(r) functions in
Figs. 1(a)-1(c) and dividing the results by the factor
1—3;;/N;, we obtain the T';; for run 1. Figure 1(d) shows
some combinations of the I';; as a function of the upper
limit in the integration of (30d), r,,, nondimensionalized
by the number density of the system. It is apparent that
the T';; are fast oscillating functions of r,,,,, and that the
fluctuations of I';; become smaller as r,,, increases. Ac-
cording to (30c) the combination I'{;+TI',,—2I'|,, when
evaluated at r_,, — o, should be zero for an ideal sys-
tem. It is apparent in Fig. 1(d) that this function tends to
a value in the range (0,0.2), which indicates a slight
departure from ideality.

It is difficult to assess the errors in extrapolating these
functions to r, — c, but an uncertainty of 0.2 in
r',+I,,—2T, lets us take Q =1 with an uncertainty of
about 10%. Accordingly, in what follows we assume
ideality.

The other functions of I';; shown in Fig. 1(d) are relat-
ed to the partial molar volumes through (see Ref. [27])

V1=Q[1+py(Ty—T)1/p (40a)
and
3
2 (a) Ar—-Ar
1
0]
— 2 (b) Ar—Kr
Na)
®0
(0]
2 (c) Kr—Kr
1
%o 4 8 12 16
r ()
) ]
‘.
|
0.5} |
| " p(Tyy+T22—RT5)
|‘l P(T22—T1z)
-1.0 . . .
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FIG. 1. Radial distribution functions for 512-particle

equimolar system (run 1), averaged over 2X 10° configurations.
(a) gi1(r), (b) g12(r), and (c) g,(r). The vertical thin line is
shown to facilitate comparison. (d) Combinations of their spa-
tial integrals I';; plotted against the upper limit of integration
and nondimensionalized by the number density p.
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I72=Q[1‘*‘}01(1-‘11_1‘12)]/!7 .

Since the combinations I',—I'}, and I');—TI', tend to
zero as r,,,— o, the partial molar volumes of Ar and
Kr are approximately equal in this simulation. We there-
fore use Eq. (23) instead of the more complicated Eq. (22)
for the common force model. The uncertainty associated
with this assumption probably amounts to <10%. Since
the ratio ¥, /¥, is independent of Q, the equal molar
volume approximation and the ideality approximation
are independent.

(40b)

B. Accuracy, precision, and comparison with earlier results

In Fig. 2(a) we present the velocity correlation func-
tions for Ar, Kr, and the collective Ar-Kr mode at short
times. The simulation consisted of 512 total particles in
equal proportions (Table II, run 1). The real parts of the
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FIG. 2. (a) Normalized 20-ps-long velocity correlation func-
tion for run 1. The solid line is for D, the long dashed line for
D,,., and the short dashed line for Dg,. (b) The corresponding
frequency spectra on a logarithmic scale. Thin solid lines are
self-diffusivities of Ar and Kr, and the thick solid line is D;.
The long and short dashed lines are the chemical diffusivities
predicted by Darken’s model and the common force model, re-
spectively.
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frequency-dependent diffusivities, obtained from the
Fourier transform of these correlation functions by Egs.
(30a) and (31a), are shown in Fig. 2(b). We obtained these
results using an upper time limit of integration ¢, =20
ps, and averaging the results over approximately 2 X 10°
time origins 7. Note that the frequency axis is logarith-
mic to emphasize the behavior at comparatively low fre-
quencies. The results at =0 are indicated by the sym-
bols on the vertical axis. The qualitative features seen in
Fig. 2(b) are consistent with those computed by Rahman
for pure Ar [32]. The diffusivities have a maximum at in-
termediate frequencies, followed by a plateau at lower
frequencies. The frequency-dependent diffusivities ap-
pear insensitive to frequency at the lowest frequencies we
can resolve. Unless low frequency modes exist that are
undetected in our study, the results presented for this run
in Table III ought to be comparable to laboratory time
scale experiments (assuming the validity of the potential
model, etc.).

To make a quantitative assessment of the probable er-
ror in the zero-frequency diffusivity caused by truncation
of ¢, it is necessary to introduce model assumptions for
the long-time tail of the velocity correlation functions.
The truncated diffusivity D(w) and the “exact” diffusivity
D (w) are related by

t .
D(e)= [ ™dteic(n

=D(0)— [” dteec(r). (41)

If we assume that the long-time tail of the velocity corre-

lation function is given by the hydrodynamic result
[16,23]

lim ¢ (¢)—cqt ~372 (42)
t— 0
the correction term in (41) may be bounded as follows:
‘ftw dtei“”c(t)‘Scoftw dt|ei®'t =3/2|
<co " drlt™37]
2C0
=—. (43)
‘/tmax

Therefore, if our truncation is within the hydrodynamic
regime (42) the effect of truncation is to introduce an er-
ror proportional to ¢../2. The constant of proportionali-
ty ¢, must be determined separately for each diffusivity
mode in each simulation from the measured long-time
behavior of the appropriate correlation functions. Unfor-
tunately, we cannot resolve the long-time tail of ¢ (¢) in
any of our simulations. Within our ability to measure it
the coefficient ¢, in (43) is zero, and so the effect of the
truncation of ¢_,, should be negligible within our statisti-
cal errors.

Fluctuations in the diffusivity spectra can be used to
estimate their precision. It is evident in Fig. 2(b) that the
self-diffusivities of Ar and Kr have essentially no uncer-
tainty in comparison with the much larger uncertainty
for the chemical diffusivity D,;. As noted earlier, this is
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TABLE III. Diffusion coefficients in 10~° cm?/s for the equimolar systems.

N =512 N=1728

VCF* MSD® VCF MSD
tmax: 20 ps 80 ps 20 ps 80 ps 20 ps 20 ps
Dy, 3.26 3.25 3.27 3.26 3.37 3.34
Dy, 3.12 291 3.19 3.04 3.68 3.30
Dy, 2.71 2.70 2.70 2.70 2.78 2.74
*From velocity correlation functions at zero frequency.
®From mean squared displacement at t,,,,.

because the self-diffusivities may be averaged over all par- gins is reduced by a factor of 1200 [ie,

ticles of a given type but no such averaging is possible for
the chemical diffusivity. Increasing the number of parti-
cles improves the precision of the self-diffusivities but not
the chemical diffusivity. Both diffusivities are averaged
over time origins 7. For a given ¢, ,,, the number of ori-
gins 7 may be increased only by increasing the total run
time of the simulation. The computation shown in Fig.
2(b) consisted of 10° time steps, and cost =17 Cray Y-
MP CPU hours. Even with such a long run the fluctua-
tions in chemical diffusivity suggest a precision of order
10% at low frequencies.

There is a trade-off between accuracy and precision.
For a run with a fixed number of time steps decreasing
t..x allows the integrand to be averaged over a larger
number of time origins, which in turn gives chemical
diffusivities of higher precision. The cost for this reduc-
tion in ¢, is an increase in the lowest resolved frequency
Opin=2T/t .« The connection between behaviors at
®=0 and wp;, becomes more problematic, and the accu-
racy of the result (from the point of view of laboratory
time scale experiments) suffers. In Fig. 3 we show the
real part of the frequency-dependent diffusivities comput-
ed from the same data used to construct Fig. 2(b), but in-
creasing ¢, from 20 to 80 ps. The number of time ori-

D(107%cm?/s)

0 # L N " " N
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FIG. 3. As Fig. 2(b), but from 80-ps-long velocity correlation
functions.

1200=(80 ps—20 ps)/(0.05 ps/record)]. Our lowest
nonzero frequency is now extended from 0.2 to 0.1 ps ),
but the precision estimated from the magnitude of the
fluctuations is greatly reduced. No new low frequency
behavior was discovered by extending the frequency
range. The diffusivities computed with ¢, =80 ps are
also given in Table III.

We also compute diffusivities using mean squared dis-
placements. We define the time-dependent self-diffusivity
of component j to be [26]

2
D,.(t)=-——<|’(”6’(°)| ) (44)
t

When evaluated in the limit of infinite time this gives the
Einstein result

DFinstein= lim D,(z) , (45)

t— ©

which is formally equivalent to the Green-Kubo expres-
sion (31a) when ¢,, = o [16]. Here r is the coordinate of
a particle of type j, and the average { ) is over all parti-
cles of this type. The mutual-diffusion coefficient is ob-
tained in an analogous manner using the collective dis-
placement [cf. Eq. (30b)]

Nl NZ
rp)=x, I r(t)—x, 3 r,(t). (46)
v=1 v=1

The time-dependent self-diffusivity (44) may be written in
terms of the velocity autocorrelation function ¢ (¢) by [16]

D;(n= [ ds cls) . (47a)

5
t

We may express ¢ (¢) in terms of the frequency-dependent
self-diffusivity through the inverse transform of (31a).
Combining these expressions gives

l 0 t
D=~ [ “doDjw) [ ds

P—i eMM
t

1+iot—e'

w2

] ;  (47b)

a similar transformation relates the time- and frequency-
dependent mutual-diffusion coefficients.
In Fig. 4 we show the mean squared displacements for
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run 1 to ¢, =20 ps, and the resulting time-dependent
diffusivities are shown in Fig. 5. The strong time depen-
dence of the diffusivities at short time is related to their
strong frequency dependence at high frequencies. At
long times the mean squared displacements appear linear,
but a slight curvature remains in Fig. 4 that translates
into a residual slope in the time-dependent diffusivities
shown in Fig. 5. This is particularly evident in the time-
dependent mutual-diffusion coefficient. The self-
diffusivities obtained from mean squared displacements
are in excellent agreement with the velocity correlation
results (Table III). The mutual diffusivities are in some-
what poorer agreement, probably because of the greater
scatter evident in Figs. 2(b) and 3. We estimate the sta-
tistical errors for this run to be about 10% for chemical
diffusivity and 0.5% for self-diffusivities.

w
~
@
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\no !
[ { Jolly and Bearman [18]
~—
= Schoen and Hoheisel [19]

1 J

Heyes [20]
0 L L .
0 6 12 18 24
t (ps)

FIG. 5. Time-dependent diffusivities from the Einstein rela-
tions for ¢,,, =20 ps of run 1 (D, solid line; D ,,, short dashed
line; D,, long dashed line), with the results of Refs. [18-20]:
D, (downward triangles), Dy, (upward triangles), and D, (cir-
cles).
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In Fig. 5 we also compared our time-dependent
diffusivities with those of previous workers. Heyes and
co-workers [33,20] reported a correlation integral time
tax Of =2.5 ps, Schoen and Hoheisel [19] =3.0 ps, and
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FIG. 6. Spectra of 20-ps-long velocity correlation functions
for Arg ;5Krg s (a) and Arg ,5Krg 55 (b). See Fig. 2(b) caption.
(c) Mean squared displacements with ¢.,,=20 ps. The top
three lines are for Arg ;5Krg,s, and the bottom three lines for
Arg ,sKrg 750 solid lines, Dy, short dashed lines, D,,, and long
dashed lines, Dy,.
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TABLE IV. Diffusion coefficients in 10> cm?/s for the nonequimolar systems.

Arg 75Krg 25

Arp.25Kro.75

VCF MSD VCF MSD
tmax: 20 ps 80 ps 20 ps 80 ps 20 ps 20 ps
Dy, 4.51 5.15 4.36 4.71 2.51 2.52
Dy, 4.07 4.64 3.94 4.31 2.19 2.38
Dy, 3.77 4.41 3.61 3.97 2.06 2.06
Jolly and Bearman [18] =~3.5 ps. Our diffusivity continues to frequencies lower than 27 /80 ps~!. This is

coefficients at ¢_,, =20 ps are somewhat larger than those
found in the previous studies, and by inference the
disagreement would be greater if our correlation times
were even longer. The agreement is improved if our
time-dependent diffusion coefficients, evaluated at the in-
tegral time reported by other workers, are compared to
the diffusion coefficients they reported. What differences
remain may be attributed to statistical uncertainties and
differences in implementation. For example, we use 512
atoms whereas Heyes and Schoen and Hoheisel use 256
and Jolly and Bearman use 864.

C. Dependence on composition

To examine the dependence of the diffusivities on com-
position we carried out simulations at compositions
Arg 15Kr 55 (run 2) and Arg ,5Kr 45 (run 3). The volume
and energy of these systems are slightly different, and
different from run 1 described above, to give the same
simulation pressure and temperature (Table II). The real
parts of the frequency-dependent diffusivities for these
runs are shown in Figs. 6(a) and 6(b), respectively. These
were computed using ¢, =20 ps, but averaged over only
1.8 X 10° and 8 X 10* time origins for reasons of economy.
The diffusivity coefficients for these runs are given in
Table IV.

A comparison of these frequency-dependent
diffusivities with those of run 1 shown in Fig. 2(b) shows
a surprisingly strong composition dependence. The
diffusivity values at low frequency decrease in the order
Arg 15Krg o5 > Arg 5K s> Arg ,5Kry 75.  Increasing  the
abundance of Ar, by itself a faster diffusing species, in-
creases the self-diffusivity of Kr and also increases the
chemical diffusivity. In contrast to the Ar, sKr, 5 results
[Figs. 2(b) and 3], the frequency-dependent diffusivities in
Ar, ,sKrg .5 and Arg ,5Krj 75 do not exhibit a low fre-
quency plateau. It is therefore apparent that some low
frequency modes of the system (o <2 /t,,,) are not ade-
quately resolved with ¢, =20 ps. The static ©o=0
values indicated must therefore be regarded with some
skepticism. The existence of low frequency modes is also
evident in plots of mean squared displacement [Fig. 6(c)]
which are clearly nonlinear in the time interval [0,20 ps].

To explore the low frequency behavior evident in
Ar, ,sKry,5 we computed the frequency-dependent
diffusivities with ¢, =80 ps. This result, shown in Fig.
7(a), is noisier than Fig. 6(a) because the results are aver-
aged over a smaller number of time origins. Neverthe-
less, it is apparent that the strong frequency dependence

also seen in the curvature of the mean squared displace-
ments shown in Fig.7(b).

In Fig. 8 we compare our ¢, =20 ps velocity correla-
tion diffusivities for all three compositions with the re-
sults of Heyes [20]. In general our results agree well with
Heyes, but our measured diffusivities increase with in-
creasing Ar fraction more than his. This is consistent
with the dependence of diffusivity on correlation integral
time, as illustrated in Fig. 5, and on the frequency-
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FIG. 7. (a) As Fig. 2(b), but from 80-ps-long velocity correla-
tion functions and for Arg;sKrg,s. (b) As for Fig. S, but for
Arg 75Kro.25.
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FIG. 8. Compositional dependence of the diffusivities in Ar-
Kr binary mixtures. Solid symbols with lines are results of
Heyes [20]: D,, (downward triangles), Dg, (circles), and
D, (upward triangles). Our results (Tables III and IV) are
represented by stars (D,,), plus signs (Dg,), and empty circles
(D).

dependent behaviors seen in Figs. 2(b), 6(a), and 6(b). The
frequency dependence of Kr rich Ar,,sKr, 55 [Fig. 6(b)]
suggests that increasing ¢,,, will decrease the diffusivities
at that composition; whereas the frequency dependence
of Ar rich Ar, ;5Krg ,5 [Fig. 6(a)] suggests that increasing
tax Will increase the diffusivities. Thus by increasing the
correlation time from Heyes’s 2.5 ps to our 20 ps value,
we tend to increase the diffusivities of Ar rich composi-
tions relative to Ar poor compositions. The trend may be
accidental —the relevant diffusivity is ¢,,, — o, and this
may be either greater than or less than the results
presented here. The point we emphasize here is that
these results are sensitive to the correlation integral time,
and the discrepancy between our result and Heyes’s may
be explained by our different values of ¢,,, and by the
specific frequency dependences seen in Figs. 2(b), 6(a),
and 6(b).

D. Effect of simulation size

A fundamental question regarding molecular dynamics
simulations is whether the properties of a small and
periodic sample are necessarily representative of the
properties of a macroscopic aperiodic system [29]. Our
run 4 (Table II) has the equimolar composition used in
run 1, but uses 1728 particles in a correspondingly larger
periodic simulation cell. For reasons of computational
efficiency, our r—6 potential term is truncated at L /2;
thus in effect we are changing both particle size and the
truncation distance. Our results on pure Ar using
Ewald’s method suggest that increasing the truncation
distance (from L /2 to «) may raise the diffusivity by
10%. Here we have increased the cutoff distance by a
factor of 3v'1728 /512=23. We do not expect this to have
a dramatic effect on the diffusivities, but the possibility
must be acknowledged.

The frequency-dependent diffusivities for run 4, com-
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FIG. 9. As Fig. 2(b), but for 1728-particle system (run 4).

puted with 7, =20 ps, are shown in Fig. 9. They are al-
most identical to those in Fig. 2(b), but there are two sub-
tle differences. First, the fluctuations seen in the chemi-
cal diffusivity in Fig. 9 are much larger than seen in Fig.
2(b), sometimes breaking the bracket formed by the Ar
and Kr self-diffusivities. This is probably due to the
smaller number of time origins used (~8X10* vs
2X10%). Second, a slight slope in the frequency-
dependent diffusivities is evident in Fig. 9, suggesting that
a low frequency mode may be present that was undetect-
ed in Fig. 2(b). Because of this slope, the diffusivities
computed for this run are systematically larger than
those computed for run 1 (Table III).

Reports of the N dependence of diffusion coefficients in
the literature are rather controversial (e.g., [34] and refer-
ences therein). It is commonly believed that transport
coefficients are nearly independent of N, but both in-
creases and decreases in the self-diffusivity of Ar have
been reported on increasing the number of particles [34].
Additional work on this problem is necessary. This may
prove to be particularly interesting in view of the possi-
bility that N dependence and ¢,,, dependence maybe
coupled through the low frequency mode suggested by
Fig. 9.

V. EMPIRICAL DIFFUSION MODELS

The above discussions are relevant to assessing how ac-
curate and precise numerical simulations are in relation
to laboratory data (values in the limit N — o ,?_, —> o,
and w—0). Of course this is also sensitive to the intera-
tomic force model which we take here as given. Despite
the difficulties described above, there are aspects of these
simulations that are useful for elucidating relationships
between the microscopic dynamics and macroscopic
transport coefficients that hold true regardless of the
faithfulness of the model to any specific “real” system. It
is in this spirit we test our simulations against the empiri-
cal models to begin a systematic study of the applicability
of those relationships.
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The self-diffusivities of Ar and Kr shown in Figs. 2(b),
3, 6(a), 6(b), 7(a), and 9 may be used to compute the
frequency-dependent Darken model chemical diffusivity
[Eq. (35)] and the common force model chemical
diffusivity [Eq. (37)]. Long dashed lines in Figs. 2(b), 4,
6(a), 6(b), 7(a), and 9 represent the Darken model calcula-
tion, and short dashed lines in those figures are for the
common force model. In each of these figures Darken’s
model is consistent with the velocity correlation function
determination of the chemical diffusivity over the entire
frequency range that is resolved. At low frequencies the
chemical diffusivities predicted by Darken’s model and
by the common force model tend to converge, and our
velocity correlation results have larger uncertainty.
Therefore at frequencies lower than about 5 ps ! we can-
not discriminate between the two models.

We showed in Eq. (34) that the term f;/x?
+f5,/x3—2f, /%%, must be zero if Darken’s model is
exactly correct. In Fig. 10(a) we show this term evalu-
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FIG. 10. Normalized velocity cross-correlation functions (a)
and their spectra (b) for run 1. In both diagrams, the long
dashed lines, the short dashed lines, and the thin solid lines are
the cross correlations due to Ar-Ar interactions, Kr-Kr interac-
tions, and Ar-Kr interactions, respectively. The thick solid
lines are the combination of them as indicated in the figures [see
Eq. (32)].
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ated in the time domain, and in Fig. 10(b) in the frequen-
cy domain, from data collected in run 1 where
x;=x,=0.5. It is evident in Fig. 10(b) that the condi-
tion necessary for Darken’s model to work is well
satisfied over the entire resolved frequency range. Similar
results for runs 2 and 3 are shown in Fig. 11.

The sum f;/x3+f5 /x3—2f,/x,x, may deviate
from zero in either direction [6]. Small positive devia-
tions have been found for highly dissymmetric L-J model
mixtures [35] and some nonelectrolyte solutions [6].
These positive departures are inconsistent with both the
empirical models we consider. Negative deviations have
been found for some other nonelectrolyte solutions [6]
and for molten salts [36]. As demonstrated in Eq. (36)
the sum is negative when the common force model
works. The negativity of this term for molten salts allows
the possibility that the common force model would apply
to that Coulombic system. The good agreement of the
common force model for silicate systems [10], which are
also characterized by strong Coulombic interactions, sug-
gests a connection between the dominance of Coulombic
forces and applicability of the common force model.

The individual velocity cross-correlation terms f;,
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FIG. 11. As Fig. 10(b), but for Arj;sKry,s (a) and

Aro.stro‘ 75 (b).
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f23, and f, are substantial and negative at low frequen-
cies, Figs. 10(b), 11(a), and 11(b). The assumption that
cross correlations are zero ([16], p. 289), which may be
used to derive Darken’s model, is clearly contradicted by
these calculations (see also [28]).

The negativity of these velocity cross correlations may
be explained qualitatively as follows. The negativity of
f1, results from the requirement of the conservation of
momentum. Conservation of momentum requires that

Ny N,
mi3v,tm,3v, =0 (48)
v Y
at all times. Squaring this result gives
Nl N2
2mim, 3 3 Avgv,)
vy
N, |2 N, 2
=—mi|3v,| —m3|3v,| <0. (49)
v Y

Since at ¢ =0 the magnitude of the correlation is larger
than at other times, (49) is expected to dominate f,
(33c¢), and so this term is likely negative.

To interpret f;; and f,, we image a system where the
particle velocities within a species i are randomly distri-
buted, and the average particle velocity of the species
N, 'S,L,v, is zero. In our Ar-Kr models this assump-
tion is valid. Consequently the sum of the cross correla-
tions within a single species, v, 3, % v,, must be negative
even though individual cross correlations v,-v,.., could
be positive, negative, or zero. Again, since the correla-
tions at ¢ =0 are expected to dominate we would predict
f11<0(33a) and f,, <0 (33b).

It is interesting to note that in Ar-dominated
Ar, ,sKr; 55 [Fig. 11(a)] the largest cross-correlation term
is f,;, whereas in Kr-dominated Ar, ,sKrg ;5 [Fig. 11(b)]
the largest term is f,,. At the intermediate composition
Ar, sKr, s [Fig. 10(b)] the f; term dominates at high fre-
quency, but f,, dominates at low frequency. This is
qualitatively consistent with the expectation that Ar will
contribute preferentially to higher frequency modes be-
cause of its lower mass.
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VI. CONCLUSIONS

Two empirical diffusion models that relate chemical
diffusivities to self-diffusivities and thermodynamic prop-
erties are described at the level of the phenomenological
equations and using the microscopic statistical theory of
liquids. Assumptions that yield Darken’s model and the
common force model are discussed. The model relations
are compared with molecular dynamics simulation results
for four binary Ar-Kr mixtures. Self- and chemical
diffusivities of the simulated systems are calculated from
the Fourier spectrum of velocity correlation functions
and from mean squared displacements. We have made
special efforts to obtain reliable diffusivities by calculating
the velocity correlation functions and mean squared dis-
placements over comparatively long correlation times
(20-80 ps).

The computed chemical diffusivities are consistent
with Darken’s model in the entire frequency range real-
ized in the simulations. At high frequencies where the
frequency-dependent diffusivities have small fluctuations
the common force model is not compatible with the simu-
lation results within statistical errors. At low frequencies
the spectra have large fluctuations and the two models
cannot be discriminated with confidence. The difference
in the models results from different assumptions made for
the cross-correlation functions. Calculations of the cross
correlations for the simulated systems indicate that the
overall contribution of cross correlations to the chemical
diffusivity is indeed approximately zero, as assumed in
Darken’s model. However, individual cross correlations
are significant and negative.
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